

MADORO METALS SAMPLES UP TO 12.35 g/t GOLD AND 1,250 g/t SILVER FROM NEWLY DISCOVERED VEIN COMPLEX AT YAUTEPEC PROJECT

FOR RELEASE: JULY 6, 2021

TSXV: MDM OTC: MSTXF WKN: A2QQ1X

Vancouver, BC, Canada - Madoro Metals Corp. ("Madoro" or the "Company"), a mineral exploration company focused on Oaxaca, Mexico, is pleased to provide an update on recent exploration results from its Yautepec project. As per the Company's press release of April 22, 2021, Madoro added three new mining concessions covering the southern extension of its project based on the Company's exploration model for bonanza-grade Au-Ag polymetallic epithermal systems in Oaxaca. Madoro had since followed up by dispatching its exploration team to map and sample the southern portion of its concessions and encountered a previously unknown 7-km trend of epithermal alteration and veining along the trace of the southern project of the Yautepec project supervolcano (caldera). Specific high-potential exploration targets in this area include the *Tecolote*, *Tortuga-Guiluna*, and *Southern Dike-Tepeztate* vein systems as illustrated below.

Highlights of assays recently received from these areas include:

- 12.35 g/t Au and 1,250 g/t Ag from a 0.10 meter quartz vein grab sample within a 400 by 200 meter stockwork vein complex ('Tecolote' zone)
- 0.54 g/t Ag, 1630 ppm Cu, and 1.26 wt% Zn from a 0.10 meter vein within a 1.1 km dike and vein system; samples along this zone ('Southern Dike') contain up to 0.30 g/t Au

(Summary geochemical tables for each area appended after text)

"Our recent push into unexplored areas at Yautepec has yielded solid and very positive results, uncovering multiple new mineralized centers, demonstrating proof of concept for our exploration model," said David Jones, Madoro Metals' Exploration Manager and Director. "A general characteristic of districts with a good potential for hosting economic ore bodies is that they look consistently better with work over time; this is certainly the case at Yautepec, and we look forward to continued good news from the field."

Of particular interest is that samples from the *Tecolote* and *Southern Dike* areas are at or near the level of fossil surface hot springs (i.e., a 'paleosurface'), meaning the entire vertical run of potential bonanza epithermal grades is conserved at depth. Metal anomalies are characteristically weak to absent in rocks from paleosurface environments, and thus any anomalies are considered highly favorable as an exploration guide.

The Madoro team has since focused its exploration efforts along the continued western projection of this mineralized trend, the results from which will be in a subsequent news release.

The Yautepec project is associated with a large 'supervolcano' (caldera) that lies within a larger 120kilometer volcanic belt hosting both Fortuna Silver's (NYSE: FSM) San Jose mine and Gold Resources Corp. (AMEX: GORO) Arista-Switchback mine. The areas discussed in this release were recently discovered through systematic application of Madoro's exploration model for bonanza grade Au-Ag-polymetallic epithermal systems in Oaxaca. Summary tables of geochemical results from recent rock chip sampling in the three newly discovered areas in southern Yautepec project follow (highly anomalous values in **bold**):

<i>Tecolote Area</i> Rock Chip Sampling Results (n = 34)				
	Element	Maximum value	Samples with	Lithology of highest value sample
		, and e	values	
Precious metals	Ag	1,250 g/t	10 > 0.5 g/t	Epithermal vein complex near paleosurface
	Au	12.35 g/t	$5 \ge 0.05 \text{ ppm}$	Epithermal vein complex near paleosurface
	Cu	66.6 ppm	7 > 20 ppm	Quartz vein breccia
Base metals	Pb	171 ppm	6 > 20 ppm	Quartz vein breccia
	Zn	232 ppm	13 > 50 ppm	Oxidized quartz veinlets in tuff
	Мо	286 ppm	13 > 20 ppm	Quartz-veined breccia near paleosurface
	As	8400 ppm	11 > 800 ppm	Ferruginous carbonate sinter at
				paleosurface
	Ba	6180 ppm	14 > 1100 ppm	Laminated carbonate sinter at
Pathfinder elements				paleosurface
	Hg	0.34 ppm	5 > 0.10 ppm	Oxide veinlets in argilllized(?) travertine
				at paleosurface
	Sb	31.2 ppm	5 > 10 ppm	Ferruginous carbonate sinter at
				paleosurface
	Se	80 ppm	4 > 1 ppm	Banded quartz vein
	Te	0.88 ppm	4 <u>></u> 0.4 ppm	Oxidized vein breccia
	T1	10.6 ppm	8 > 1.0 ppm	Iron-rich carbonate sinter at paleosurface

<i>Tortuga-Guiluna Vein</i> Rock Chip Sampling Results (n = 24)				
	Element	Maximum	Samples with	Lithology of highest value sample
		value	Significant	
			values	
	Ag	1.7 g/t	3 > 0.50 g/t	Silicified hydrothermal breccia subjacent
Precious				to paleosurface
metals	Au	0.06 g/t	3 ≥ 0.02 ppm	Silicified hydrothermal breccia subjacent
				to paleosurface
	Cu	10.8 ppm	n/a	Oxide vein in tuff subjacent to
				paleosurface
Base	Pb	25 ppm	2 > 20 ppm	Oxide fracture in argillized tuff subjacent
metals				to paleosurface
	Zn	87 ppm	13 <u>></u> 20 ppm	Oxide vein in tuff subjacent to
				paleosurface
	Мо	63.8 ppm	6 > 10 ppm	Oxidized quartz veinlet subjacent to
				paleosurface

	As	6120 ppm	6 > 100 ppm	Ferruginous carbonate sinter at paleosurface, possibly w/laminated
Pathfinder elements	Ba	2970 ppm	20 > 100 ppm	Oxidized fracture in argillized tuff subjacent to paleosurface
	Hg	21.6 ppm	9 ≥ 0.50 ppm	Oxidized and argillized volcanic rock subjacent to paleosurface
	Sb	73.2 ppm	3 > 10 ppm	Ferruginous carbonate sinter at paleosurface, possibly w/laminated oxidized sulfides
	Se	1.2 ppm	$2 \ge 1$ ppm	Oxidized fracture in tuff subjacent to paleosurface
	Те	0.15 ppm	5 ≥ 0.50 ppm	Ferruginous carbonate sinter at paleosurface, possibly w/laminated oxidized sulfides
	Tl	0.92 ppm	8 > 0.20 ppm	Ferruginous carbonate sinter at paleosurface

<i>Southern Dike – Tepeztate Vein</i> Rock Chip Sampling Results (n = 24)				
	Element	Maximum	Samples with	Lithology of highest value sample
		value	Significant	
			values	
	Ag	0.55 g/t	2 > 0.50 g/t	Carbonate veined tuff
Precious	Au	0.30 g/t	$3 \ge 0.10 \text{ ppm}$	Quartz veins in lithic tuff
metals				
	Cu	1630 ppm	1	Strong oxide veining in fractures
	Pb	19.9 ppm	na	Carbonate vein
Base	Zn	1.26 %	2 ≥ 60 ppm	Strong oxide veining in fractures
metals	Mo	8.72 ppm	3 > 3 ppm	Brecciated quartz vein in silicified and
				argillized rhyolite dike
	As	347 ppm	10 > 100 ppm	Oxidized fractures in lithic tuff
	Ba	590 ppm	16 > 100 ppm	Veined lithic tuff
	Hg	0.53 ppm	1	Strong oxide veining in fractures
Pathfinder	Sb	3.04 ppm	1	Strong oxide veining in fractures
elements	Se	6.2 ppm	1	Strong oxide veining in fractures
	Te	0.05 ppm	1	Strong oxide veining in fractures
	T1	0.48 ppm	2 > 0.26 ppm	Oxidized fractures in lithic tuff

Rock chip samples were prepared for analysis at the ALS-Global facility in Guadalajara, Jalisco, Mexico, and pulps were then sent for analysis at ALS-Global laboratory in Vancouver, B.C., Canada.

The technical content of this news release has been reviewed and approved by Robert Johansing, M.Sc., Economic Geologist, and a Qualified Person pursuant to National Instrument 43-101.

About Madoro Metals Corp.

Madoro Metals Corp. (**MDM** | TSX Venture Exchange; **MSTXF** | OTC) is a Mexico-focused precious metals company actively engaged in exploration and development of three gold-silver projects in the state of Oaxaca, Mexico. The Yautepec, Magdalena, and Rama de Oro projects each consist of large epithermal systems that are highly prospective for precious metals in structural and geologic settings similar to those of nearby producing mines. Systematic exploration has advanced two of the projects towards drilling with the intention of discovering an economic mineral deposit.

On behalf of Madoro Metals Corp.

"Dusan Berka, P. Eng."

President & CEO

For more information, please contact: Investor Relations via email at info@madorometals.com.

www.madorometals.com

#1450 - 789 W. Pender Street

Vancouver, BC, Canada V6C 1H2

Tel: +1 (604) 681-1568

Email: info@madorometals.com

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

This news release may contain forward-looking statements including but not limited to comments regarding timing and content of upcoming work programs, geological interpretations, receipt of property titles, potential mineral recovery processes, etc. Forward-looking statements address future events and conditions and therefore involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. Madoro Metals Corp. relies upon litigation protection for forward-looking statements.